Copied to
clipboard

G = C32×C13⋊C4order 468 = 22·32·13

Direct product of C32 and C13⋊C4

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C32×C13⋊C4, C397C12, (C3×C39)⋊4C4, C133(C3×C12), D13.2(C3×C6), (C3×D13).7C6, (C32×D13).3C2, SmallGroup(468,36)

Series: Derived Chief Lower central Upper central

C1C13 — C32×C13⋊C4
C1C13D13C3×D13C32×D13 — C32×C13⋊C4
C13 — C32×C13⋊C4
C1C32

Generators and relations for C32×C13⋊C4
 G = < a,b,c,d | a3=b3=c13=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >

13C2
13C4
13C6
13C6
13C6
13C6
13C12
13C12
13C12
13C12
13C3×C6
13C3×C12

Smallest permutation representation of C32×C13⋊C4
On 117 points
Generators in S117
(1 105 53)(2 106 54)(3 107 55)(4 108 56)(5 109 57)(6 110 58)(7 111 59)(8 112 60)(9 113 61)(10 114 62)(11 115 63)(12 116 64)(13 117 65)(14 79 66)(15 80 67)(16 81 68)(17 82 69)(18 83 70)(19 84 71)(20 85 72)(21 86 73)(22 87 74)(23 88 75)(24 89 76)(25 90 77)(26 91 78)(27 92 40)(28 93 41)(29 94 42)(30 95 43)(31 96 44)(32 97 45)(33 98 46)(34 99 47)(35 100 48)(36 101 49)(37 102 50)(38 103 51)(39 104 52)
(1 27 14)(2 28 15)(3 29 16)(4 30 17)(5 31 18)(6 32 19)(7 33 20)(8 34 21)(9 35 22)(10 36 23)(11 37 24)(12 38 25)(13 39 26)(40 66 53)(41 67 54)(42 68 55)(43 69 56)(44 70 57)(45 71 58)(46 72 59)(47 73 60)(48 74 61)(49 75 62)(50 76 63)(51 77 64)(52 78 65)(79 105 92)(80 106 93)(81 107 94)(82 108 95)(83 109 96)(84 110 97)(85 111 98)(86 112 99)(87 113 100)(88 114 101)(89 115 102)(90 116 103)(91 117 104)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)
(2 9 13 6)(3 4 12 11)(5 7 10 8)(15 22 26 19)(16 17 25 24)(18 20 23 21)(28 35 39 32)(29 30 38 37)(31 33 36 34)(41 48 52 45)(42 43 51 50)(44 46 49 47)(54 61 65 58)(55 56 64 63)(57 59 62 60)(67 74 78 71)(68 69 77 76)(70 72 75 73)(80 87 91 84)(81 82 90 89)(83 85 88 86)(93 100 104 97)(94 95 103 102)(96 98 101 99)(106 113 117 110)(107 108 116 115)(109 111 114 112)

G:=sub<Sym(117)| (1,105,53)(2,106,54)(3,107,55)(4,108,56)(5,109,57)(6,110,58)(7,111,59)(8,112,60)(9,113,61)(10,114,62)(11,115,63)(12,116,64)(13,117,65)(14,79,66)(15,80,67)(16,81,68)(17,82,69)(18,83,70)(19,84,71)(20,85,72)(21,86,73)(22,87,74)(23,88,75)(24,89,76)(25,90,77)(26,91,78)(27,92,40)(28,93,41)(29,94,42)(30,95,43)(31,96,44)(32,97,45)(33,98,46)(34,99,47)(35,100,48)(36,101,49)(37,102,50)(38,103,51)(39,104,52), (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26)(40,66,53)(41,67,54)(42,68,55)(43,69,56)(44,70,57)(45,71,58)(46,72,59)(47,73,60)(48,74,61)(49,75,62)(50,76,63)(51,77,64)(52,78,65)(79,105,92)(80,106,93)(81,107,94)(82,108,95)(83,109,96)(84,110,97)(85,111,98)(86,112,99)(87,113,100)(88,114,101)(89,115,102)(90,116,103)(91,117,104), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (2,9,13,6)(3,4,12,11)(5,7,10,8)(15,22,26,19)(16,17,25,24)(18,20,23,21)(28,35,39,32)(29,30,38,37)(31,33,36,34)(41,48,52,45)(42,43,51,50)(44,46,49,47)(54,61,65,58)(55,56,64,63)(57,59,62,60)(67,74,78,71)(68,69,77,76)(70,72,75,73)(80,87,91,84)(81,82,90,89)(83,85,88,86)(93,100,104,97)(94,95,103,102)(96,98,101,99)(106,113,117,110)(107,108,116,115)(109,111,114,112)>;

G:=Group( (1,105,53)(2,106,54)(3,107,55)(4,108,56)(5,109,57)(6,110,58)(7,111,59)(8,112,60)(9,113,61)(10,114,62)(11,115,63)(12,116,64)(13,117,65)(14,79,66)(15,80,67)(16,81,68)(17,82,69)(18,83,70)(19,84,71)(20,85,72)(21,86,73)(22,87,74)(23,88,75)(24,89,76)(25,90,77)(26,91,78)(27,92,40)(28,93,41)(29,94,42)(30,95,43)(31,96,44)(32,97,45)(33,98,46)(34,99,47)(35,100,48)(36,101,49)(37,102,50)(38,103,51)(39,104,52), (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26)(40,66,53)(41,67,54)(42,68,55)(43,69,56)(44,70,57)(45,71,58)(46,72,59)(47,73,60)(48,74,61)(49,75,62)(50,76,63)(51,77,64)(52,78,65)(79,105,92)(80,106,93)(81,107,94)(82,108,95)(83,109,96)(84,110,97)(85,111,98)(86,112,99)(87,113,100)(88,114,101)(89,115,102)(90,116,103)(91,117,104), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (2,9,13,6)(3,4,12,11)(5,7,10,8)(15,22,26,19)(16,17,25,24)(18,20,23,21)(28,35,39,32)(29,30,38,37)(31,33,36,34)(41,48,52,45)(42,43,51,50)(44,46,49,47)(54,61,65,58)(55,56,64,63)(57,59,62,60)(67,74,78,71)(68,69,77,76)(70,72,75,73)(80,87,91,84)(81,82,90,89)(83,85,88,86)(93,100,104,97)(94,95,103,102)(96,98,101,99)(106,113,117,110)(107,108,116,115)(109,111,114,112) );

G=PermutationGroup([[(1,105,53),(2,106,54),(3,107,55),(4,108,56),(5,109,57),(6,110,58),(7,111,59),(8,112,60),(9,113,61),(10,114,62),(11,115,63),(12,116,64),(13,117,65),(14,79,66),(15,80,67),(16,81,68),(17,82,69),(18,83,70),(19,84,71),(20,85,72),(21,86,73),(22,87,74),(23,88,75),(24,89,76),(25,90,77),(26,91,78),(27,92,40),(28,93,41),(29,94,42),(30,95,43),(31,96,44),(32,97,45),(33,98,46),(34,99,47),(35,100,48),(36,101,49),(37,102,50),(38,103,51),(39,104,52)], [(1,27,14),(2,28,15),(3,29,16),(4,30,17),(5,31,18),(6,32,19),(7,33,20),(8,34,21),(9,35,22),(10,36,23),(11,37,24),(12,38,25),(13,39,26),(40,66,53),(41,67,54),(42,68,55),(43,69,56),(44,70,57),(45,71,58),(46,72,59),(47,73,60),(48,74,61),(49,75,62),(50,76,63),(51,77,64),(52,78,65),(79,105,92),(80,106,93),(81,107,94),(82,108,95),(83,109,96),(84,110,97),(85,111,98),(86,112,99),(87,113,100),(88,114,101),(89,115,102),(90,116,103),(91,117,104)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117)], [(2,9,13,6),(3,4,12,11),(5,7,10,8),(15,22,26,19),(16,17,25,24),(18,20,23,21),(28,35,39,32),(29,30,38,37),(31,33,36,34),(41,48,52,45),(42,43,51,50),(44,46,49,47),(54,61,65,58),(55,56,64,63),(57,59,62,60),(67,74,78,71),(68,69,77,76),(70,72,75,73),(80,87,91,84),(81,82,90,89),(83,85,88,86),(93,100,104,97),(94,95,103,102),(96,98,101,99),(106,113,117,110),(107,108,116,115),(109,111,114,112)]])

63 conjugacy classes

class 1  2 3A···3H4A4B6A···6H12A···12P13A13B13C39A···39X
order123···3446···612···1213131339···39
size1131···1131313···1313···134444···4

63 irreducible representations

dim11111144
type+++
imageC1C2C3C4C6C12C13⋊C4C3×C13⋊C4
kernelC32×C13⋊C4C32×D13C3×C13⋊C4C3×C39C3×D13C39C32C3
# reps1182816324

Matrix representation of C32×C13⋊C4 in GL5(𝔽157)

1440000
01000
00100
00010
00001
,
10000
012000
001200
000120
000012
,
10000
0103122103156
01000
00100
00010
,
280000
01000
0548910955
01224867102
00010

G:=sub<GL(5,GF(157))| [144,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,103,1,0,0,0,122,0,1,0,0,103,0,0,1,0,156,0,0,0],[28,0,0,0,0,0,1,54,122,0,0,0,89,48,0,0,0,109,67,1,0,0,55,102,0] >;

C32×C13⋊C4 in GAP, Magma, Sage, TeX

C_3^2\times C_{13}\rtimes C_4
% in TeX

G:=Group("C3^2xC13:C4");
// GroupNames label

G:=SmallGroup(468,36);
// by ID

G=gap.SmallGroup(468,36);
# by ID

G:=PCGroup([5,-2,-3,-3,-2,-13,90,7204,619]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^13=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

Export

Subgroup lattice of C32×C13⋊C4 in TeX

׿
×
𝔽